The square of a planar cubic graph is 7-colorable
نویسندگان
چکیده
منابع مشابه
Coloring the square of a planar graph
We prove that for any planar graph G with maximum degree , it holds that the chromatic number of the square of G satisfies (G) 2 þ 25. We generalize this result to integer labelings of planar graphs involving constraints on distances one and two in the graph. 2002 Wiley Periodicals, Inc. J Graph Theory 42: 110–124, 2003
متن کامل2 01 0 Every planar graph without adjacent short cycles is 3 - colorable
Two cycles are adjacent if they have an edge in common. Suppose that G is a planar graph, for any two adjacent cycles C1 and C2, we have |C1| + |C2| ≥ 11, in particular, when |C1| = 5, |C2| ≥ 7. We show that the graph G is 3-colorable.
متن کاملAcyclically 3-Colorable Planar Graphs
In this paper we study the planar graphs that admit an acyclic 3-coloring. We show that testing acyclic 3-colorability is NP-hard, even for planar graphs of maximum degree 4, and we show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable. Further, we show that every planar graph has a subdivision with one vertex per edge that admits an acyclic 3-colori...
متن کاملEvery 4-regular graph is acyclically edge-6-colorable
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a(G) of G is the smallest integer k such that G has an acyclic edge coloring using k colors. Fiamčik (1978) and later Alon, Sudakov and Zaks (2001) conjectured that a(G) ≤ ∆ + 2 for any simple graph G with maximum degree ∆. Basavaraju and Chandran (2009) show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 2018
ISSN: 0095-8956
DOI: 10.1016/j.jctb.2017.08.010